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(7 A PROBABILMTIC THEORY OF UTILITI 1

R9 Duncan Luce

1. Introduction

The mathematical formulation of individual decision making

utility theory -has been traditionally based upon non-probabilistic

preference relationsp usually postulated to be weak orders, Few

authors have been satisfied with the assumption that preference is

transitive, which is easily demonstrated to be at variance with

fact, Yet this assumption has been retained as an approximation

to reality because of its nice mathematical properties; for example,

only such a preference relation can be represented by a single order

preserving numerical function ,, Nonetheless, a number of people have

voiced a desire for a probabilistic theorvy, mainly., I would judge,

so as better to handle epirical data, Here is an attempt at such

a theory. One pleasing aspect of this theory .Le that it seems to

have conceptual import as well as giving the o-" .%icist a more

manageable tool.

The intuitive idea behind the mathematical framework I

.-shall present is this: Pairs of elements (or alternatives or

stimuli) are selected from a given set S, and a person is required

to choose from each pair the alternative which he views as "superior"

according to some given comparative dimension - a dimension whom

choice depends upon the particular empirical context, It may bejpreference. intensit7y size, loudness, importance, etc. It will be

'This paper completely supercedes "Two results on semi-ordered
( mixture spaces." Technical Report no. 13$ Behavioral Models Project,

Bureau of Applied Social Research, Columbia University.
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C
convenient to think of the underiyiug comparative dimension as

"strict preference," but it must be kept in mind that this is only

one of the many possible interpretations which can be given to the

formaiso

If a and b are elements of S, it is postulated that there

exists a probability P(a~b) that a is judged as strictly preferred

to b, One problem to be faced is the axiomatic formulation of

the fact that mrraqnimnsions seem to impose something like a

linear ordering tipon the underlying set S. Onre, this is done, S is

specialized to be a set of risky alternatives of the form ab, where

this symbol is interpreted to mean that altera ive a arises with

probability ,, and alternative b with probabiJlit.1 1o The exact

meaning that should be given to the wor4 "probe 'ility" will receive

some attention, At this points my central assivption will be

introduced$ namely that the activity of decid, -g which of two

alternatives is prferred is statistically inaj .ndent of the

activity of discrirainating which of two probabi.ities is largero

Indeed this entire paper can be described as exploring the con-

sequences of this one asoumtiono

It may intrigue the reader to know in a0va,-e ae of the

interpretive conclusions wo shall reach.

io If the independence assumption is met; then the

probabilities entering into the risky alternatives nst be sub-

(jective probabilities, where subjective probability is given a vel2

defined and operational meanin ieh is identical to a traditional

(veage of "uubjeetv" in
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iio If the indpenence asuuuption is met, then the

matheatical form of the discrizination function for subjective

probabilities is complete3y determined up to a single parameters

ii. If the independence assumption is met and if a certain

natural weak order induced by the probabilities P can be represented

by a linear utility function, then that function is a subjective

sensation scale in the sense used in psychologyj and, under slightly

stronger assumptions9 the converse is trust a sensation scale is a

linear utility function.

iv, Suppose the basic alternatives in a situation are sum of

money and that there are at least three differ,nt sums such that for

arV pair of these sum a particular person wUii invara & prefer the

larger, everything else being held equal' If I-hi discrimination of

subjective probabilities is not perfect and if the independence

I assumption is met for gambles of monoys then t. :re cannot exist a

utility function fo: these sums of money such lat the utility of a

gamble is equal to the expected utility of its componentso Put

i another w#V, if his preferences among these moaey gambles can be

represented by a linear utility function, then his preference dis-

Scriination cannot be independent of his subjective probability

b, discrimination 3 unless the latter is perfect.

•Backgound references for this paper ae Edards 1

[ ]Luce, and Edoad [ , and von Nemann and

M



2. Diusz' iuiatoin aid Liner Sbuctuwe

Definition 1. Given a not S# a reala'valued, function P with doain

sxs is called a dimpiain t geon s prowided thats

Dl. P(asb) Z 0, for al nasbcs

D2. P(asb) + P(bsa) 1,I for all asbaSq

and D3. there exist &*,bftS such that P(a*,.b*) P~ a)

A diamyindnation. structure In called reflexive if

D4~. P(asa) 0- osor all as.

Since P(asb) in interpreted as the probability that a is

sticl preferred to b, l-P(asb)-P(b,a) is interpreted as the

pbabilitr that a in judged mindifferentm to Nh

Definition 2o If P is a discrimination structwe on Sp the biftwy

relation.>, on S is defined ast a b iftP(a so) ZP(bc) and P(cj6)

P(c,a) for alloaS, If a 3.band b asthen a-b insuritten. If

a a b and not a" b, then a > b is written.

Thermi, laaP In adismiiination struture on Ss theinisa

Proof.9 Obviouso

Defintion A dscrimination, structure P ort S is call3ed transitive

if a>b iiplies P(bsa) a0.

if the peeeesregistered by people are assiumd to be

governed by a discrimination stracture, then in general a ample of

prf aene will include iutzaneltivities,

6 1 0



There is nothing in the definition of a disce into

structure which attets to capture, sene in probabilistic termep

Uwa idea that a preference dinsion lImposes a Linear, or weak,

orderi ng on So The appropriate restriction is suggested by

definition 2, but it can a3.o be arrived at by intuitive considera-

tions such as these: Suppose that it is possible to string the

elements of S out as a linear aray in such a mane that, for each

a&S, P(xpa) is an increasing function of x and P(apx) is a decreasing

function of x, then we may thinkc of this array as reflecting in-.

creasing preferenco Thus, we are led tos

Definition 4a A discrimination structure P on S Is called a linea

stfructure provided that for every asbsS either

i. P(aso) > P(b.,c) and P(c..b)> PVcoa) for all c&S,

or' 110 P(a,c) < P(b,c) and P(o,b) cP(c,a), for all oe.

Theorem 2. If P is a linear structure on S, ~ is a weak

ordering of S'Q

Proof .Obvious 0

4, If a linear structure is ref le~ive, and so transitive, then no
intansitivities, but ir, general this is not soo.

sample of reported preferences vill include a-Griot preference / I

propose that decision theories postulate the existence of linear

structuresa, not week orders, as the basic preference infomtion,

Evpiricaly observationis on subjest would be used, not to conetruat

weak orders directly, but to estimate the underlying linear structure.

Once that is recovered, definition 2 generates a weAk order suitable

for use in the present mathmtical theories, In webh of the



followinag work certain assumptions about, linear structures will be

made and their consequences for the induced weak orders eV,1ored.

Pbc the most part we shafl. be concerned with underying spes coa-

sisting of riuky alternatives and with weak orders that an be

represented by linear utility functions, It will be shown, a=

other things that certain plausible conditions on a Linear

strocture inplyv that its weak order can be represented by a linear

utility function and that the entire linear structure can be

represented by the utilit7 function plus one other real-valued

function of a real variableo

It should be pointed out that the present concepts provide

not only a framework f or a probabilistic theory of utility, but also

include as special cases all the mthuistical models Of discrinina-

tion studied In paedophydss In that works S in taken to be the

positive real .ec U5Whil IJJ.. have nUfo iurt z1icra of xammrn th

p~ychpbyscal modcl hare, I shall note from t4&r- to time close

conceptual relations between. it and this utility model. Iich of this

work was suggested by a kowaledge oj both the classical disorinina-

tion model and the von Neumann utility thew= 1 1 and, whether we

like it or not, som of the consequences of a probabilistic utility

theory are psychcpbysical in natun'ea The reader interested, In the

formal mte tia tructare of the PsycoIWia wde can corn-

$ uult(J

One thing that is clear in that fer results can be obtained

about athing so general as a dleiiaimstructure, that to find

* ( a~~& nca.4rivial cneune it is necessary to postulate an imderluin
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setSII- which inse aoth mih an hse ofdmbl mtbintibaal suan'ee

obtaned by choosing S to be an approrIAte topological spin, but so

far no work Sn this direction has been undztaken.

3. Haarseftations of Linear strutures by suuiorderu

Before spe cialiing S to a space of risby alternatives, the

relation bten lI'e tuctures and a pinre2y algebraic mode of

* ~disca'Sl~ to (i4 will be iamined0  An algebraic r epresentation
of arr discrmnto structure can be obtained via the fdowiing

sanard -bf*Lm daybs

Definition lo It P be a discrimination structure on S and let k be

a uoer k < Ithen thepar of bi' c:Aorj(I" ) an

is defined bys

aLkb if P(a,b) :- k

alkb if P(,b)cjk andP(ba)-c k.

11b winl be recalled that in ( Ithe following concept was

Intrdud

Deinton 6. A pair of binary relations (i.,i) on a st s is called

a sdSiOMia If for evusyv apbposda8 the follmding sniam are set:

81. mot~, one of .Th, Usa or alb obtsiz'a,

82. aZ&O

83. albs e SIplya14,

341. a&Lbbrabld Iqpb not both ald and die,
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Ter -3. The relations (L ,k) of a 14ne r .uata e farm a

Proof. S2. Axiom D2 of Definition 1 and k > 1/2.

52o E' ax.om D2. P(a,a) c 1/2 I k, so alka.

S3. SiVpose a" b, bkok, c"kd. We sho a A o. Svppoase > a

then by definition 2, P(eb) > P(ab), but by definition 5, k > P(cb)

and P(aqb) > k which is imosible, Thuis by theorem 2 a>

Then by definition 2, P(ad) > P(od) > k, so aLkd

S4o SOppose aIkb, bLke, blkd. Since P(ab) > k > P(bb),

definitios 2 and 4 i3P y a > b. In Ike mner b > 0o As above,

one shows that either a d. b or bi d>,ca If the former,

P(dc) > P(b,c) > k, so not dkOo If the latter, not akd

We observe that if a linear struture is both refladve and

transitive, then the range of k my be extended. to 0 < k < 1.

Given a pair of relations (LI), anothex, rair of relations

(>t, ,') can be deflmds

a >lb if either i. albs

ii, alb and there exists a such that ale and oLbp

4iii. alb and there exta- d such that aLe and elb.

a,. b if neither a >'b nor b >'a.

In [j] it uas shown that if (LI) is a smiords, then (20.n') is a

weak arde, which we speak of as the weak order induced by the sauias'w.

. If Pisa inar stu reao kan 3A I k c 1.

wea are induced Z P accorud -top~ 2, and te

U p" w e a k"In d u c e d b y t h e 2, uW- U WU~'~ ".
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Proof. Ia: ba then either

. aLkb so P(ab) N k 2 P(a&a)S so by i tioe 2 and 4, a > bI

or i., alkb, ... es a aLkb, so P(csb) > k 2_ P(c,,,), .o a > bi

or Mie0 akb, aLkd , and dkb , so P(ad) > k > P(bd)q so a > b,

4~. DeomoablDmoiint Structin'e an Weak YUiture Sa

Hmh of moder utility theory treats an ,.mderlying pace of

rIsky alternatives a~b# wbese thl iyols su47 intrpreted to

man that ons but not both, of the alternatives a or b resulat the

fomer with probability A and the latter with probability 1-b4. JAwt

what ntxepretation should be given to the word "probability" is a

point of disputei we will be led to a particular subjective probability

ocept in section 7. Nowever, at present the concept of probabiUty

need not be brought in at a l, but rather A am be taken to denote

the ocwrence of a wall specifi event, such as mhther a given die

throln by a particular medhmim at a specified tim ceus up sx, or

Wbether the word "M'itain" wIIi be found in col-- 58 page 2 of

tom.row's Nw York Tiues' If . denoten the oc-reoe of a PftUCU2

event, let Z denote ite -f oe In these *.ea~ b will be

interpret to man that a results if event ( ocee and b If It doe

not. The set 4of evnte which will be aditted eperiment3y wil

have to satIsfy certafn special propertius In the lSt of the

defnitm w shall Intiro e, nany: basic events shall be

independnt of am amother and there Is at least one event, o, vhih

has (shj active) pobabiliy Oo The azim given below, and In

l ater sations, ae clam ey related to thoe given by N [ s. [
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what he called a zxture space; however even when we introduce

nmbera we shall not need all of his axiom

Definition 7. Let 3 be a Boolean algebra with mll element oe

A set 8 is called a weak mixture sace over I if for all a,bgS and .E,

R2. a" - as

R3. abb -ta

R4. acb -b.

The next concept, which has no analogue in non-probabilistic

utility theory, is crucial throughout the rest of this paper. Cot-

eider the two alternatives acb and aob. It is plausible that the

former will be preferred to that latter if and on2y if either

i. alternative a is preferred to b and event .4 is perceived

as more probable than event p,

or i. alternati-e b is preferred to a and vent p is perceived

as more probable than event A.

If we assume that there is a probability Q( p) that .4 is discriminated

as more probable than P and if we sume that the perception of

preference is statistically independent of the dcmrlination of

relative probability mgnitudss, then there in (se Definition 8) a

simle iepression for the probabili* that ab is preferrd to ab.

It is true that there is som evidence which suggests that thuese

prom es my not be statistically Independent, at least vben A and

pare identified with their obetv probabilities however* thn

Is far from certain at preent, naa event, It Is intrein to



oxmdm the consequences of this assuption - especially since sam

of them are intiately related to the notion of a linear utility

functiono

Definition 8. A discrimination structure P on a weak mixture space S

is said to be decoqosable if there exists a real valued function Q

on EWE, which is called the core of P, such that for all A,PgE,

i.0 QGSP) > Os
I. Q(.As + Q(P,.A) _< 1,

and iii. for all a,beS,

P(a.b,apb) - P(ab)Q(.,,p) + P(b,a)Q(3,.),

It is simple to give an expression for Q in term of P, namely:

Q(,), P(a.blalb)P(a,,b) - P(a, b,ab)P(ba)

P(a,b) 2 - P(ba) 2

for any a,beS such that P(a,b) P(ba) (by definition 1, there is at

least one such pair). This formula renders it possible to estimate Q

from mpirical preforence data, if the assumption is correct, and to

determine whether it is correct by holding A -ad P fixed while varying

a and b,

At this point I could offer an exuple of a decomposable

discrimination stnicture, but since later results will make con-

structing examples completely trivial, there i little point in taking

the space hwe

The semiaorer represntation of liner structures (see.the

previous section) is inadequate for the satud of decoposable linear

structures for the following reasons If a probability cutoff k is
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(
chosen and it is applied to both P and Q, then either c or aob

iiIp1y (a~b )Ik(apb)g for in the former case

PlaAbab) P(ab)Q(.cvp) + P(ba)Q(pA)

<k[P(ab) + P(ba)]

<kq

and sinilarly P(a~b,aAb) C k. In the latter case a similar proof

holds. However, the converse need not be true. Consider, for example,

a case where k = 5/8, P(ab) - 3/1, P(ba) - 1/4, Q((,P) - 3/1,

and Q(3,9) 1/, then it follows that P(a~b,apb) - 5/8

and P(apb,ab) - 3/8, so (aAb)Ik(apb) even though neither alkb nor .I

Definition 9. Let E be a Boolean algebra. A real-valued function f on

E is called s vxwtric if (.qp) a f(r,).

Definition 10. A discrimination structure P on S is called additive

if there exists a constant K, 0 < K <_ 1, such that for all abgS,

P(ab) + P(bqa) - K.

Theorm 5. The core of a decomposable discrimnation structure on a

weak mixture space is itself a discrimination structure, it is

s"Mmtri, and it is either reflexive or additive with K - 1.

Proof. Lot P be the decomposable disrimination structure and Q its

core. To sho Q is a discriination structure it is sufficient to

show Q(eo)p #Q(o,e), where we oal -m.

Suppose not, then for ary a&bS, axom R3 and R4 iWp2r

P(ab) a P(aebaob)

- P(ajb)Q(e,o) + P(bqa)Q(o,e)

S (- [P(a,b) + P(b,a)]Q(e,o).
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By axiom D3 of definition 1, the"e exist &*,bff S such that

P(a*,b*) # P(b*,a*)q but from what has just been showns

P(a*gb*) - (P(a*,b*) + P(b*,a*)]Q(.,o)

-(P(b*,a*) + P(a*,b*)]Q(eso)

= * ,a9

which is a contradiction,

To show Qis symmtric, let a* and b* be the elements

described in axiom D3 (definition 1), then by axiom R3 (definition 7)

P(a*.cb*,a~b*) - P(b'**a*)s

for all .4ppeE. Apply the decomposition assumption to both sides,

P(a*,qb*)Q(iAp) + P(b*sa*)Q(P,.c)

aP(b*.,a*)Q(-A,F) + * ,,*Qf7

Collecting terms,9

P~a,9r*[Q(97Z)- Q(,sp)J + P(b*sa*)[QW-,J) - Q(P,.c)] 0

Interchange the roles of a* and b*,

P~b*,a*)(Q( ~ + - Gp) (a*,,b*)[QC:.) -Q(P,Ai)] 0

This pair of equations has no non-trivial solution since the

determinant of coefficients, P(a~'b*) 2 _ Po1,a*)2, is non-zero by the

choice of a* and b*, so Q is syuustric.

* I Using axiom R2.9 and the decopoeition assumption, then for

&WaS and azvA ~

P(a,a) - P(acA&,aPa) - P(aqa)CQ.AP) + Q(PvcO]

if P(a,a) >0 for any a, then Q(A$P) + Q(p,.c) -1, so Q In additive

withK -1., If Pis reflexivep then by axims Mand D3 there exit

a*$ b415 such that P(a*b*) * P(b*sa*) )- 0,

so
P(a&i*,A*V&b*) - 0 - ?(&eOb*)Q(.i,.) + * q*QqA

implies Q(A#A) a0# iLe., Q Is reflve
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Definition 11. A discrimination structure P on a week mbture space

is called re if for all asbaS and .4eE, P(aaA) - P(bab).

The importance of the concept of regularity will not becoe

apparent until section 6o

Theorem 6. A decomposable discrimination structure P on a weak

mixture sace is regular and either it is reflexive and transitive or

it is additive. It is reflexive if and only if its core is reflexive.

It is additive if and only if its core is additive.

Proof. Using axiom R4 and the decomposability assumption,

P(a,a~b) =- P(aeb,a~b ) - P(a,b (eA) -, P(ba (A,e)

P(bAab) - P(b.a,bea) - P(ba)Q(w.,e) + P(a,b)Q(eA)p

and so P is regular.

Frcm the proof of theorem 5, we know that Q is reflexive if
By the remark following definition 3, P is transitive.

and only if P is reflexive, /If P is not refleKive, choose a' such

that P(a',a')> OI and let K _ 2P(altat), then for arq aS

K = 2P(a',at) a 2P(a'ebaleb)

- 2Q(e,e)[P(a',b) + P(bat)]

= P(a',b) + * sa)

low, take any a, bcS,

2P(b,b) - 2P(bea',bea,)

a P(b,a') + P(a',b)

a 2P(bea,bea)

a P(b,a) + P(a,b),

so P is additive.

I (



Corollar. The core of a decomposable linear structure is a linear

structure.

Proof, Let P be the decomposable linear structure and Q its core.

Choose a*,b* eS such that P(a*,b*) > P(b*,a*) this is possible by

D3. For ary .,PE. the fact that P is linear means

P(a*(b*,c) - P(ajb*,c) and P(c,a*pb*) - P(c,a*Ab*)

are both non-negative for all OcS or both are non-positive for all caS.

Without loss of generality, suppose the former is true. Choose

o a &aXb*, where X&Eq app3y the decomposition assumption, and collect

- Q(P,))] P(b*,a*)[Q(xp) - Q('Xs)] _ 0,

P(a*,b*)[Q(X.P) - Q0X,4)] - P(b*,a*)[Q(, ,,) - Q(P,X)] _ 0.

If P is reflexive wd transitive, then P(b*,a*) - 0 and P(a*,b*) > O

so

Q(.9) t Q(P,)) and Q p ) > Q(),. ), for all US

so Q is linear. If P is additive, theorems 5 and 6 state that Q is

additive with K - 12 so

QG)X-)= 1- Q) - + Q1X1.

Substituting,

[P(a*,b*) - P(b*,a*)][(QGX) - Q(p,,X)] > 0.

Since, by the choice of a* and b*, the first tam is positive, the

"i( second must be non-neptive, so Q is linear. By theorem 6, all oae

have been oevered.

r *----'
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(While this theorem gives several necessary conditions for

a discrimination structure to be decomposable, no necessmy and

sufficient conditions are now known. In section 9, a smaewat

special sufficient condition will be presented.

It is interesting to note the relationship between this

theorem and experimental practice. The additive case with K a 1

corresponds to forced choice responses, i.e., where a subject is

not permitted to report indifference between two alternatives and

P(a,a) is taken to be 1/2 br definition. The alternative procedure

is to permit Indifference reports. One might be inclindd to postulate

that a person will always report indifference between an element and

itself, i.e., he will yield a reflexive discrimination structure.

But in that case, the structure must be transitive: if a > b, then

the subject must either report preference for a over b or indifference

between them, but never preference for b over a. It is clear that

one would have to be quite optimistic to expect this, and etal

practice in psychophysics, where an analogous problem exists, is to

use forced choice questions.

-f;(

- -" -



Ir
1 -

(
5. Decomposable Discrimination Structures on Risk Spaces

To proceed further, it appears to be necessary to make some-

what stronger assumptions about the underlying space of alternativeso

specifically to introduce the concept of subjective probabilities.

.The intuitive idea of subjective probability is reasonably clear,

and a number of authors have used it to construct theories of

decision making, the most elaborate being Savage's [7]. These

authors have not, however, attempted to use the notion of imperfect

discrim nation to get at it, and, as I shall attempt to show, this

approach seems to have certain empirical advantageso If E is a

Boolean algebra of events, then intuitively a subjective probability

function on E is a single valued function into the closed interval

from 0 to I with the properties:

4(o) - 0

*(.) , ) -i.

The first of these .- certainly not controverzial, since in essence

this is what is meant by the event o; this is not to say that it vil

be a trivial matter to identify o in applications, The second

condition - additivity - has been objected to by at least one

person: Edwards [1] He has contended that, at least when the

events in E have objective probabilities attached to them, sub-

jective probability should be a single valued function of them

probabilities, not just of the events, Thus, if A has objective

probability 1/2, then so does 7s hesce by the additivity condition

the subjective probability of the objective probability 1/2 must

' ( itself be 1/2r This he and others find objectionable for spirical
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reasons. He feels that the additivity condition must goo Others

feel the difficxIt) lies in identifying objective probabilities.,

rather than eventsp as basic., I would hold that the msbjective

probabilit4sof heads and tails ma and probably do differ, even

though they have the same objective probability, but their sum must

be 1,

On the face o.? it, it would appear that could not be

determined.; however, certain adaptations of tvadition psychophysical

methods seem to mi..t it possible to find .r:om data provided that

the decomposition assu~tion is met (see seation 7), To de'uelop

these methods, one vory irpor-Unt condition hn.s to be ilposed upon E.

nxmely: it mist br, so dense tImt the image o:, ) is the whole of the

unit interv!&L I i-ai. int-roduce these ideas u-domatically in

definition 12, n ,.sing tho symbols -( and 13 "Zo stand for the sub-

jective probabilities attched to events, not :cr the events them-

selves.

Let [ap] &-note the closed iaterval 1,.'- real and 7 < ( < p]t

(a,p) the correspording open interv-l and (cyrp and [,p) the half

.1,* - open intervals

Definition 12, A sct S is cv-lled a ria tic V_ for all a,beS and

Rl. a.~b&,

R3, a~b

R4. alb =a.

R5. if either.O or 0,

a p (b p3
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Given the two demanda on a subjective olvo.tV'Nunction,

Rl'4 follow immediate3ly from the corresponding axiom in defintion 7.

Axiom R5 has no counterpart in definition 7 and it is controvrsial.

It is almost certainly false if the probabilities - and P are taken

to be objective, but at the subjective level it has a certain

plausibility. Actuall., no results in this papers save theorem 14p,

require nearly so mch as R5. Riact what is used will be examined

following the proof of theorem 7. What Haumner has called a mixture

space is a risk space which also satisfies

R6, if .c bc for some .(0,l], then a a b,

(Note; R4~ is then a. consequence of .2, R5,, and R6.) We will have no

occasion to use this cancellation rule, and since it is controversial

I have chosen to eliminate it from the concept of a risk space,

The next theorem, which will be discussed in detail following

the proof and in sawceeding vections, is one of the major results in

this work. It sho'.17d be ephacized that it hclds for a risk space,

not a weak mixture space.

Theorem 7, Let Q be the core of a deconmable discrimination struoture

9P over a risk spacel, then QA.,) 0 QGA-P). Let R(Gc) - Q(.) Q(A.
then R satisfies

R(4) - R(.R(P), R(.) - -R(.-), for . ,-,

R (.OSE-l9], R(O) a, R(i) - -1, R(.) 1.

Let S G) Q(A) + Q(~.If P is additive then SGO) 1, If P is

ret 2dve, then

s(4) - S(.(), s(.) - s(.), r .,p[-ll],

s(.COs[o,3], S(o) O, S(l) 1.
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Tf Q is continuous and P is aitive. then there existis e > 0 such that

1 + .49
-__ , if (&[Ool

If Q is continuous and P is relexive, then there exist z > 8 >0 smih that

+ e

Q(.) 
2

i~L~~~1 8 
,if Ac[-l1,O]

If P is linear and reflexive, then Q(() = 0 for c < 0.

Proof, By axiom R5 of a risk space, (ab)pb = a4b, so

P[ (&%b)b, (A -Ab ] +- P(a).baq3b)o

Using the decorosition assumption twice on the left and once on the

rights

PC b )( , )+ P(b,a )Q(f3, )

=P(aXb~a~b>)QG, ) + P(aOb,a)b)(,.)

-Q(Gp )[P(c b )Q,O) + ?(b,a )Q(OX)] + Q(p )[P(ab )Q(OX)+P(b~a)Q(XO )I

= P(a,b)Q(.p)) + P(b,a)Q(3),.AX)

Collecting terms,

!" " :' ~~P(a,b )[Q(', )Q(0.,O) + QC~wv.)Q(O,) .. Q.)'=3)

+ P(b,a)Q(,P)Q(Og) + Q(P,A)Qo.,O) - Q(psAX)] - O0

Let a*$ b* be the elements described in axiom D3o Consider the two

equations obtained by the substitutions a = a*, b - b* and a b*9

b - a*0 Since by the choice of a* and b*p the determinant of

coefficients P(a*,b*) 2 - F b*a*)2 0 0,

Q{ x) Q(4p )(X,0) + (oo
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For ar A PS PA p/elso

Also,9

Q(*.j-,o) =Q[ -)s .(

By theorem 5, Q is synmetric, so

If .A < P. a similar resu.Lt holds, so Q(4P) Q(.p).

Thus th, functional equation for Q can be written as:

' Q(., )~Q - Q(.(> C 3 + ()( .

We next show that Q -0adQ(l) = From the functionel

equation,

Q(Q) Q(l) + Q(-) 2  and Q(-l) = 2Q(-l)Q(1)

From the second eration, either Q(-I) 0 o1 1(l) 1/2. if Q(1) 1/2,

then the first equation yieds .Q( 7 7 , so Q(- -)1.

I0 (-) , then the first equation reduce, to Q(1) 
- Q(1) 2

ac Q(3.) 0 or 1. Buit in the proof of theorem 5 we showed Q(l) EQ-)

sc o(l) a .nd Q(-1) -0.

If R is defined as in the statement, then using the functionI

equation for QS

R(4) - (4) - Q(-4)

= Q()Q(P) + Q(Q)( p) - ( ( ) - (A)Q('P)

= -[ (QG) - - 0)

, R R(P).
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The other conditions on R follow Iumediately from the conditions on Qo

If S is defined as In the statement$ then by theoreo 5 and 6

S I for P additieo If P is reflevep then

(4 ) - Q(A) + +
- Q.(.)Q(p3) + Q(',)Q(G ) + Q(-,)Q(1) + Q.Q-

Again, the other conditions are obviouso

If Q is continuous, then so are R &nd S , and it is well known

that the functional equation for F. is solved f:r4

At .9 if .Ac(0,lJ

!i.1 , i .4-Io],

for soe s > 0o Similarly, if P is roflezive,

S(A) - I.A4 , if A[-1,1]

for some 6 > 0. The expressions for Q are obtained by noting Q - R+ S )/2.

Since Q > 0, i Z;o2OW that c > No

Let P be linear and refoliv, and supose Q(-)) > 0 for

X>O. Let A= 0(X) ,then

SQ(-X) (. ) a 2Q()Q(-%) > 0,

and so Q(A) > 0 and Q(-.) > 0. Thus,

Q(,0o) -( )> 0 - Q(o) , Q(o,0),

and
, Q(o) - 0 < Q(A) -c(oQ),

hence Q in not linear. But this contradicts the corollay to theorem

6, s Q(A) .0 for A < 0.

' N
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3h addition to the continuous solutions to the cane eqatia..,t

two discontinuous Orne are wortv of note* First,,

1I if .(o911

0 ,if A O 0and Pis reflexive

1/2, if A - 0. and P is additive
0 .4 ifA[10

This rersents perfect probability discrimination. Seoonds if P is

additive,

3G /2, if s(1)

and if P Is reflexive,

Q(A) 0 if .e[-s(ll

This core represento a total failure to discriminate between arq

probability pairs except the extremes 0 and lo Later$ in theorem 12p

we will show that these are the only discontinuous core for

decom"sbl structures having linear utility functionso

Theorem 7# whleU not partieu3.ary difficult to prove# seem

to be sufficient1jy i~portant in its consequences to bear som scrutizW.

First, it should be kept in mind thiat it holds for anl deocuiosable

discrimination structures over risk spaces, not Just linear ones,,

Second, it restis on at most three asuwiptizas which an be considered

controversial, the degree to which they are cota esa fdmxing

upon how the probabilities in the risk space are inerreed. The

assations awe axiom R3 and R5 and M a, qpe94141W9 iLe.,

sftatstical i &dsp -tom of preferene and probability discrimination.

As Indicated earlier, we shall cam to interpret, the

probabilities as subjective probablities attached to events - the

(min reason, beside intizition, is given in section 7. Hoever, a
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n e of people have been amious to use objective probabilities in

ut iity theory, at least when the theory is interpreted normatively,

so let us ena.d the three asmptions assumng that objective

probabilities are intended,

Clearly, axiom R3 must be met, so we =W turn to axiom R5.

In the proof nothing so strong as aom R5 is ever used; the asumption

actually made is that

P[(a~b)Abs(a~b)pb] - P(a~bsa),bXO

This would foow, for examle, from the postulate (a.b)pb - a4bs

which am be paraphrased as saying that there is "no love or hate of

gmmblin3" Critics of modern utility theory have pointed out that,

at least for objective probabilities, this assumption is more than

likely in error) yet, it must be assumd if preferences ae to be

represented by linear utility factions, which are so inportant in

most, applications of utility theory to decision theory.

The independete assumption, it is true, s no tradition

in uUtity theory, but it certainly has an honoable history in

Probability theory and its applications in science. In av case, if

for whateve reasons these two asptions are accepted, and if Q is

assuumd to be continuous as is customary In sensory psychology and

as will be defended in theoem 12, then the form of Q is completely

deter up to a single constant in the additive case and two

constante in the reflove case (which reduce to one if the strtweae

It is an eqrical question of soe interest to detarmi

i ' ( wether in fact these are the forms of the psyohopIbysi.al functions
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(
for the discrizmtion of ojective probabilities. If they are# then

presumably the constants e and 8 are fairly basic parameters of human

discriminations and their distribution in the population should be

investgated. As we shall see in section 10, it is of interest to

know whether they are (approximately) constant or whether they vary

from person to person°

It strikes = as doubtful that this experimental step can be

bypassed, for the derived forms for Q do not seem conpletely outrageous

in the light of one's intuition about probability discrimination and

from what has been found for other psychopbysical dim4 sions Several

cases are plotted in Figs. I and 2. One thing to note is that if

there are aiw smal errors, then with only slight naller probability

there are some quite large errors of judwgmt. Possibly, this

corresponds to the sense of difficulty one has in making relative

probability Judgments except for the most extreme vales.

If, however, we are not so fortunate - and I do not believe

we are - as to have derived the correct form of the paychayhysical

function for objective probabilities, then to have a descriptive

theory of preferences based upon objective probabilities one or the

other or both of the major assumptions must go. This is to say, in

at least one of two ways people uut be imconsistent in their calula-

tions of compound preferences from the nimle ones and from objeeve

probabltU.e Naive observation strongly suggests that R5 - no love

or hate of gambling - should be dropped, but that would man drPping

linear utility functions which, in t=n, would colmee most of

decision theory. Thus, clearly, the most likely outcome insither a
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hasty retreat from the independence assun ption or the admission that

descriptive theories must be based upon eone concept of subjective

probability in the risk spa8so I shall argue for the latter courea

Incident,,, if it is accepted, it is not an unverifiable bypothesis

which manages to save every conceivable empirical situation. The

very specific conclusions of theorem 7 continue toplace strong demands

upon empirical data, even when subjective probabilit7 functions awe

admitte&

In connection with these points, a remark about normative

interpretations is in order, It has been customary to argue that,

while man of the assumptions of utility and decision theories are

somewhat unrealistic for objective probabilities, they do represent a

desirable form of consistent behavior; and, therefore, the theories

can be treated as normative prescriptions for simplifying decision

making, Certainly, R5 has been considered in this light, and it

should not be too difficult to gain (from thoas ignorant of theorem 7)

simila acceptance Zor the decomposability assumption; however, the

theorem states that these normative considerations impose tight con-

straints on a psychophysical functions It is not at all clear that

such functions are ever under conscious control or are evan subject

to serious modification by training. Thus, unless the derived

functions are the actual form for probabi.ity discrimination data, or

unless we demand complete knowledge oferfect discrimination among

objective probabilities, this result raises some doubts about camuall

giving norMative intWpretation to inadequate decriptive theorie.
S (



- 28 -

6. Utilnc Funtions end Sensation Scales

The following definition is in close conformity to traditional

usage.

Definition 33' If P is a linear structure on S and the induced weak

order is ,, then any real valued function on S which preserves the

order of , o ieeo, u(a) > u(b) if and only if a $b, is called a

utility function of P9 If S is a risk space, a utility function uI

called linear if

u(aAb) - u(&) + * A~~)

for all abaS and .s[0,l].

If a linear structure P on S has the properby that there

exists *sS such that a > b implies P(a,a*) > P(b,a*), then P(aa*)

is a utility function of P. Many empirically interesting cases will

probably have suc& an eleent a*.

It is clear that if a linear structure has a utility function

u, then any strictly increasing function of u 1- equally a utility

functiono Thus, if no further specifications are imposed, there is

little if any point, in introducing numerical representations of the

weak ordes Historically, two quite distinct traditions for re-

stricting the clasu of admissible utility function have developed,

Utility theoris, assuming weak Orders over mixture spams, not

linear structures over risk spaces, have concerned themelvee with

the existence of linear utility functions° The reasons are largely

praatics it has been practically impossible to devise matheaticallv

Interesting decision theories if utility ezpected values do not
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represent the utility of riskr situations. The von Neumann axiom

systm was devised to give an intuitive justification for restricting

one's attention to linear utility fuictions; the oritiiam of it are

well known and need not be entered into here,

At the sane time, a much older tradition for selecting futility*

funotions exists in psychopbysics. 2 It traces back to the middle of

the last century when Fechner postulated the Squality of just notice-

able differences as the defining property of subjective sensation.

In more recent work, one postulates a linear structure P on the

positive real line, and the idea - which we will specify more precisely

in definition l4 - is to find those utility functions, if any, which

render' P dependent only upon utility differences. It is argnsdq

larply on philosophical grounds, that a subjeztive sensation scale

must have the property that the probability of detecting a difference

on that scale depends only upon the difference and not upon its

location on the scae!e. In practice, this definition has been found

to be related to other intuitive concepts and to have been both useful

and stiulating in psychoprsoics.

When S is taken to be the positive reals and P is assumed to

be strictly monotonic in its two variable, conditions are known for

the existence of such scales (which are unique up to a linear trans-

formation) and their analytic form has been given. The reatler should

be warned that the traditnal mtheatioal formulation of this

2 The word "utility" as it is being used here is nothing but a athe-
matical labelj it should not be interpreted as izputing values intopsco xm judpent.

* 4,

_________________________ _____
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problem is in errorj the correct formulation and solution = be

found in [ ] The magnitude of the ero is s ficintr law

that it now appears,some incorrect conclusions probab3jy have been

hm from empirical data.o

I know of no attempt to interrelate these two distinct

traditions. Presumablys this is because on the one hand, there has

not been a probabilistic theory of utility, so it has not been

possible to impose the psychological condition therej and, on the

other hand, the idea of a risk space seem to make no sense in

traditional sensory peychology, so linearity could not be imposed

there, However, once a general probability riodel is postulated, the

psychological condition can be extended to all linear structures having

utility functions, and so in the domain of risk spaces there are two,

apparently conflIcting, criteria of selection. Part of the material

in this section (theorem 8) and part of that in section 9 (theorem 15)

establish that fo: an interesting class of ii ,ar structures on risk

space there is no conflict: the two concepts are the same,

Definition lii Let P be a linear structure with a utilitr function u,

u is said to be a sensation scale if for all a.,beS, P[u(a),u(b)] - P(ab)

depends only upon u(a) - u(b)

Theorem 8. let P be a lwar tt-ucture on a risk space and sumose P

he@ & ne utility funtion u, then u is a sensation scale if and

Proof, Suppose P is regular, Let abcpd aSsuch that u(a)-u(b) =

u(c)..u(d). We msat show P(ab) n P(cd), Suppose, with no loss ofA (.



generalityp that u(b) u(d)'. we conuider the came u(a)-u(b) >01

the other case in sladlar. Thus u(b) < u(a)'c u(c). Etrthe

linearity of usthere exists an Ae(0.91]such that

u(a) - .c(b) + (1-.ou(c) -u(b~cc)s

so av% b.~c. Hence, P(asb) - P(b0,sb). Using the assumed

relation of the elemeants and the linearity of u,

n(d) - u(c) -u(a) + u(b)

a u(c) - u(b~c) + u(b)

* .cu(c) + (1-A)u(b)

- ~~~

so d -,a~b, Thus, P(cod) - P(coib)* By the regularity of Ps

P(cic.fb) - P(b~co~b)# so P(ab) - P(c,d),

Conve3el, suppose u is a sensation. scale, By linea'itys

u(a) - u(a~cb) - (l-A~)[u(&)-su(b)j

aU(b~A) - bs

for arw apbsS and -tDO)] Since u is a sensation scale,

P(a,aAb) - P~u(a ).4(ab)] - P[u(b(a )-u(b)] P(bA.vab),

andso P isregular.

Codlay Awy linear ut:Mit function of a dcrisbelinea

strwtr in a sensation scale.o

Proofo By them 6 a decoipowable 14nar st'uoe is regulars so

by theorem 8 a linear utlity funtion is a sensation scale.O

This corollaz7~ means that aw" decorvosable linearstcte

- I ~ith a 14ea utility f unction u can be rea'ented completely by the

utility function and another real valued ftunction of a real variable,

n=07~ P[u(a) -u(b)jo
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We wil return to this general topic in theo 15j where it

is show undw alshtly stronger conditions that a sensation scale Is

a linear utility functione.

The concept of regularitb as its pu'erllel in the semiasrdws

induced by linger structurea.

Definition A asuiorder (LX) on a weak mixture space 8 is a"led

ru if for ever absS and .AE, al(ab) Iuplies (bA)Tb.

Theorem 9. t P be a regular linea structure on a weak mixture space

and let kbe anumber .k< Is then the semiorder (LkqIk) Induced

bdefinition 5 Is regular

Ptoof0 E definition 5s aZk(a.~b) is equivalent to P(a,.4):j k and

P(a~bsa) Ck. Eb the regularity of Ps P(b.*asb) w P(as&Ab) I k and

P(bsba) m P(aiba) _l k, so (bha)Ikb.

It is plausible that an analogue to theorem 8 holds far

seniorders, with the notion of jnd functions (see [ ]) replacing the

probability of dism-Udm tiono This is true; howevers, an important

modification is necessary: the assumed linear utility function must

be umbouwdeds otbervis, the obvious boundary effeat prevents the jnd

functios from being evemywhere constant* (The following tbeorni was

presented in technLial. report 13 and is repeated here for the sake of

* tco)

Theornem 10. Let (L,1) be a semiorder on a risk sace, and sggpse It

has a ]4ea utility function3 whose mnd functions are everzwbere

I I
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C
different from zero. The Id functions are constant and equal if and

only if u is unbounded and the serdorder is regular,

Proof. Suppose the Jnd functions are constant and equal. Since they

are different from zero, u must be unbourdedo Suppose aI(ab), then

by theorem2 of(j]

u(a) - ICa) : u(&A) < u~a) + 19(a).

Using the linearity of u and subtracting u(a),

-8(a) < (1-A)[u(b)-u(a)] < 1(a)o

From the equality and constancy of the Jnd functions,

, -6(b) < (:L-A)[u(b)-(a)] I _I(b)o

Adding -u(b), changing signs, and using the linearity of u, we obtain

u(b) + 1(b) > <u(b) + (L-A)ti(a) - u(b.%a) > u(b) - 2(b)o

So, by theorem 2 of [ 1 , (b.a)Tb, and the sexe.order is regular,

Conversely, suppose that u is unbounded and that the semlorder

is regular. It wi.2 be recalled [4 ] that for a,beS such that &M,

the two quantities

7(a,b) - sup[.( (a~b)h]

4(asb) - s'up[.cl (b.A&)Ia]

were defined; these were shown to be closely related to linear utility

functiowo For regular semiorders, we showthey are equalo By the

regularity of the semiordearq

7(a,') - mWE1 (,.Ab)lb3

< z[-A ( b. a) ]

Similarly, i(ab) <C Z(ab), so they are equal

71
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Consider aa &&S. Since u is unboundedg there exist a*..b*tS

such that a*Ia and aIb*. With no loss of generalityq we may choose

u to be that linear fuaction with u(a*) - 3. and u(b*) - 0. Since

the Jnd functions nevir equal zero, we know by the remarks following

theorem 4 of E ] that

~(a u~(*~)(~u a nad 6(a) - 4ab)~)

Since u is linear, there exists xa' ,,such that a - a*.4b*. where denotes ,

We now haow r (a*&*db*) c sa*db*) and (a*A*,b*)-  & O

Observeg a*L(a*Ab*),: so by definitions

sup fpl [(arb*)pa*]Ia*3

by axioms R3 and R5 if a risk space,

(&*Ab*)pa* [ b*(I-.A)a*Jf

p (b, a*)Ia*]

since a*Ib*o The othp ease is similar, Using these results and the

fact that (a* be) -(a*,b*)., we have

1(a) ~(a~b~) 8(a)"

A sinpie indtWlos now establihus that the jnd functions are constant

(and qj,
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7, Sub ective Frobabit

Reca l that in theorem 7 it was established that the core Q

of a decomposable discrimination structure on a risk space has the

property that Q() Q((- ) and that in the corollary to theorem 6

it was shown that the core of a decmosable linsa: stac.tiwe is

linearo Thus, for those linear structures mhere the we,.k order in-

duced upon [OI] by the core is the natural ordering of [0.I] by

numerical magnitudep the underlying probabilities of the risk space

form a sensation scale for Q. As is easily verified., t! . s the case

when Q is continuous -- an assumption which, as we shal, see in the

next theorem, probably will always be mde in eMpirical work and in

applications of this theory Thus, if there is any serme to the psy-

chologi.cal assumption that the sensation scales of linear structures

represent subjective sensation. then for linear, structures on risk

spaces we hive shown that the assumptions of decomosability and of

cantinvi3y of the core imply the probailti,- :?tering into the risk

space must be subjective probabilitieso The inplicatioz of this for

Sexpernental practice and a sketch of how epirca. dat car., be used

to get the subjective probability function will be presonted after the

.- next result.

llin these conclusions seem to be izport art for vtilit7 theory

it is of intarest to know whether the asvmpWicn of contiru+"y of the

core is a serious restriction or whether it is safe to easuxe that it

Is Mener,-lrly mt The foll],win£g condition, '%rhich will, play an important

role in the " ex.t two sectious: r'arer adequateo It wrill ,.e noted that

if a li icar str t cre has a ?Uinear *i, i!ty fPnction the condition is

* Sati:3ft Ce.
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Definition 16, A linear- structure on a weak risk -pac is called

consistent if for every abe sixh that a >b md P(ab) / P(ba) and

for every A [O,I] such that .> 'then awo > ab

Tborem 3.1 The core of _ decon@oiable consistent linear structure is

either continuous or one of the too discontinuoui cores defined follow

ing theorem 7.

Froof, Let P be the structure aid Q its core. We first show that if0O1
> then Q(G) > Q(p ). By axiom D3, there 'ist a*b-h-bS such that

P(a*,b*) / P(b*..a*) and there is no loss of gnerality in assuming

a* > b*a Consider ' > P. then by definition 2 and the consistency

assumtion, P(a*,2.:b*)> P(ab*,b*), Using he deconposition assurV

tion and theorem 7,
IA

P~aj~* *)P(a~i*Y*)(A) + P(b*rC>)QfXA

By theorem 6. P ic Atyher transiiAve c- addit.. ;o If it is transitive,

P(a*lb*) > P(b*,.,, - O, so Q(A) > Q(p If .s additives then by

theorem 5,. Q(,/) + 0(,0 so

0 < P(a*n.b*.,b*) -" P(a-':Pb*,b*)

[P(a*,b*) - P(b*-a*)J][Q(,) Q(p.o

Since: by choice, the first term is positive, Q(') > Q(E ),

Let R(G) IfQ((). A > 0, then by theorems 5, 6, and 7,

2Q(()- , if P is additive
, if P is reflexive

If Q has a discontinuity at Xz(Ol), so does R. Since Q is non-

decreasing, so is R, hence the discontinuity is a juM. For any A,

SA . . , and -/,, theorem 7 implies

. R('X) - R(4 ) - R(.)R( ),
so there is a discontinuity at either . or p. Since X < l and R
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( is non-decreasing, there are a non-denumerable number of juzp, "which

is impossible since R is bounded. Thus, the only discontinuities can
be at O, I, and -.

Suppose 1 is a discontinuity, then there exists 6 > 0 such

that for ay .4e[0,1), R(A) < 1-8. Consider any Ps[O,1) and arq integer

n > 00 Clearly, there exists an .4e[OqI) such that .4n ps so by induction

R(P) = R(4n') -RG.('m (1-8.)n,I

so RG) - 0 for -c(-ll)0  If P is transitive. then Q(4) = 0, and

if P is additive, then Q(A) - 1/2, for .(-1,IXo This is the second

discontinuous solution described after theorem 7o

Next, suppose there is a discontinuity at 0, Suppose P, and

therefore Q, is transitive and that there is a Xe(O,I) such that

Q() - I- 6< 1, For any > Oj, there exists an integer n such that

Q(An) = Q(')n - (1--6)n - e. Since Q is non-decreasing and Q(O) - 0,

this shows Q is continuous at O contrary to assumptiono If Q is

additive, a parallel argument holds using R. Thus, Q(A) = 1 for

46(0,I], which is the first solution described, and the proof is concluded.

These two di.continuous solutions represent, it will be recalled,

total failure to discriminate probability differences e=ept for the

most extreme values and perfect discriminations neither of which people

can be expected to exhibit0  Thus, all that can arise in practice under

our assuzptions are the continuous solutionB This means that if the

decomposability assumption is met by a consistent linear structure, and

so by any linear structure having a linear utility function, then the

risk space must be constructed from subjective probabilities, where a

subjective probability function is defined to be the sensation scale of

the linear structure characterizing the discrimination of the underlying

v(, event space
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With this interpretation of the probabilities of a risk spaces

it is no longer apparent that axiom R5 is false; however, axiom R3 is

now also thrown into doubt* These and the decomposition assusption

will have to be examined epirically A plausible epirical procedure

is outlined below,

A basic set of independent events is chosen (eogo, including

coin tossing, the next day's weather, the fifth letter of a certain

line of a certain page of a certain book, etc,) from which E is con-

structed, and the probabilities of preference among pure and risky

alternatives based upon these events are discovered. Two cases should

be examined: monetary gambles and non-monetar oes As we shall see,

theorem 13 leads one to suspect that there may be quite striking

differences between these two cases, From these data, the right side

of the formula following definition 8 is computed. If it is not

independent of the alternatives a and b, then the decomposition

assumption is not rmlid, so none of the results apply and we are stuck.

F If, however, it is independent of the alternatives, then we have an

empirical estimate of Q. From Q, the ordering > is determined according

to defi-nition 2; if this is not a weak order, again we are stuck, If,

however, it is, then choose any of its utility functions, call it u,

such that u(e) = 1 and u(o) 0 0 We can then transform the data for

the discrimination of events into discrimination of the real numbers

u() by defining

Q[(G),u(p)] QG0), where .,,PaeB

This now formulates a conventional psychopIyical problem, and the

( standard calculations, described to some oxte in [51, can be adpted
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C to find an approxmation to the function z which transform u into a

sensation scale. The function t,9 where tG ) - [u(.c)] is then the

subjective probability function for the event space E. With t known,

the additivity postulate t(G) - 14(A) can be checked.

If the assumtions underlying theorem 7 are valid, then we

know that the empirical data Q and the function 4 must be related as

follows: in the additive case,

+( W -0 - N O W - if V ) 00.4)p

2

and in the transitive case,

Q(p) i
0 , if () < 4(p)

where A.PE and t > O, With f known, it is a matter of estimation-

probably by c-ve fitting - to obtain e,

It will be noted that each of the central assuutions is tested

separatelyo The decomposition assuption first, then the linearity

of P (either directly or via the linearity of Q), R3 via the additivity

of 0 once it is computed, and final3- R5 by finding whether Q has the

correct form or not.

It is to be hoped that some experimentalist will find this

(very likely exacting) task of interest. It is certainly intriguing

to find out whether the discrimination of preference and of subjective

probability are statistically independent processes, and, if sos

whether subjective probabilities met the additivity condition.
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Fathrer -r, if 9 is chosen to consist of events having well defined

objective probabilities, there wil be interest in the relation betwmn

subjective and objective probabilities -- a topic which has received

some speculative attention in the past*

8. ArchimAdean Structures

In this and the following section we shall be concerned with

a particular class of linear structures which, as we shall see in

theorem l49 have linear utility functions provided that there is

neither perfect discrimination nor total failure to discrimi te among

the probabilities of the underlying risk space The new restriction

is one of the axiom imposed b7 von Neumann on weak orders to prove the

existence of linear utility functions in that context,

Definition 17. A linear structure on a weak risk space S with the

induced weak order , is said to be an Archimedean structure if, for

all abcsS satisfying a > b > c, there exists an .c(0,1), such that

Clearr, any linear structure having a linear utility function

is Abimden.

The next result, while udldy interesting itself, is prinaril

needed to prove the following two more important theoremo

Theorem 12. A deco ..le Arch em structure on a risk space is

onsistent.

Proof, Casider albsS such that a > b and P(ajb) # P(ba) and

Aps[.0,1] such that - > p First, we sh that &b a apb if the ore

(o (has the property that Q(o) Q(.v) for al c[(0,1). Consider arr osS,

* {



then if a :l a - bo the Arohimadeen condition states thbat there wdsts

Us(op1) smob that a "@Xb. Using aicm R4~ and the decmposition

asatuption,

P(a,b) a - 'bcb

a P(cob)Q(X) + P(bso)Q(mX)

- Q0t)[)P(c~b) + PbcI

and
P(b,a) m P(cObjq~b)

-Q(X)[P(cob) + P(boc)3.

Thas P(a~b) - P(bsa), which is contr'ary to choice, so a _>,a

SlzU~ar3lj ay, cb,,

using either the frchimedean condition or azios R3 amd R4&

for any aS there exists cre [0,1] such that a -aab. Weditgih

three cusess

1 c - 0,O Then Os so aA -b apb.

ti a 1 and a-0. In this case, c -%bs so

P(apbsc) - P(apbob)

- P(amb)Q(p) + P(b,&)Q(-p)

-P(al,b)

iii, All other values of A and ca. Note# La(-,) so

P(&Ab,c) - P(a.~byaab)

- P(ab)Q(Ama) + P(bqa)Q(*A.)

- Q(.(-a)P(agb) + P(bpa)].

In a slaile 'A,
P(apb..o) -Q(puu)[P(asb) + P(boa)].
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We n howh tbat Q(p) aQ0.) if p,.(l1.If P is additlve, them

by tbecom 5, 1 - Q(p) + Q('mp) - 2Q(P)* for ps(4,1v)t so Q(p) - 31/2.

If P I. reflmdvie and tansitive, then asInce apb b and P(bila) a 0,

0 - P(aC~,apb) - Q(-p)P(apb),

so Q(p) a *(p 0. With this equality, we mar conclude

Cominngthese cases,9 P(a~ibc) t P(apbsc)q for aln c&B,

Similarly, P(o~aAb) < P(c,apb), for all asS, so by definition 2,

a~b a b.

Now, svppose that apb > abI then clear. A> p and by what

we have just shown there exists )X s[0,1.) such that Q(X,) J4 Q(-) ).

First#we show that a >apb. If not.,then by the lineaity of Ps

aPb a, a > b. By the Archimedean condition or axiom R4~ there exists

pes(O.3i such that a %^ (apb)pb. By axiomR5.9 a " appb. By the

decomposition assuption and axiom RW~

P(a.,a) - P(appbalb)

= P(asb )Q(pp-1) + P(boa )Q(1L-pp)
- P(a3.boappb)

- P(agb )Q(lmpp) + P(bsa )Q(pp-l).

0 - (ai,b) - (b..a)]EQ(PP-l) -Q(1-fP)1.

By choice, the first term is non-wo, so Q(jpp-1) - Q(l-pp).

rf a 0 s[0911 has the propwtyr Vae) a Q(-% 0)j then we Ahmn

Q(@r) - Q('@) for anl cz[O,%]3 Lot a - was here U.91193 then by

the fractional eqution derived in theorem 7,9

Q(qr) 0100.) -Q0X)Q(0 ) +Q(m))Q(aa )
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C Q(% )[Qx) Q(-4)],

anid

Q(..q) - Q(>o ) - Q(-A)Q(u) 4 Q()Q-o~ )

- Q( )(QO,) + Q(-A)] 0

0

'um, Q(o) - Q(a). By hypothesis, there exists )+8(0,1) such that
Q(Xo Q(-)) so for aW ). >'%a$ the inequait holds. If a > o,

then clearly co and ). can be chosen arbitraily close, so thwe

exists a > Xo such that v2 < Ooo Using the functional equation for Q,

Q(02) Q(ar) 2 + Q(_0) 2

,V Q(.Qa )
so cQ(o) Q(.) =ontrary to the choice of o+ Thmus

o -O, so Pa 1, But this i imossible since p I and < , <

so we mt conclude a > a0b > abo

The Arca condition in used onca again to find ).(0,L)

such that apb " akzzb) - a(A+)X-A)b 0 An argument sizilar to thAt

just eVloyed estsblhs that p - . + (l-.)), which is i ipIesible

since P -.A. Thus, P is consistent,

Thom 3 Let P be a decMcsable Azcieenstructure an a risk

r S and let Q be its owe. If there are elements aabsS such that

P(bsa) - o a .itherP(ab) - K the additive case or P(ab) s I

in the tpensitive ase, then either Q(A) - I for .(O,] oa a b

Ptoof. Lot 0 denote K in the additive cue and 1 in the transitive oase.

Sipops a > a, then by definiti 2, P(cb)> P(ab) -c, so P(cb) -o
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and P(bao) * 0 by definitions 1 and 1,00 E the Arohijden cowditi n,

there exists an As(0,), such that a%^ o.ba so

P(&,b) a 0 a P(cbo~o)

- P(ob)Q(.c) + P(bc)Q(-c)

- QG),o

Thus, Q(.c) I for an ,(O,1). By theorem 2, P is consistent, so by

theorem 3-, Q() - 1 for all ,(Ol] Similarly, either c>b or the

same coare exdistso

This result seeve to have considerable import, for experiments

and applications of utility theory Any realization of a risk spaece is

gene-ated by forming probability "mixtunes" from a finite number of

"pure" or "basicw alternativeso It is probably safe to assum that

usually there will be more than two alternatives and tha. the subjects

wil be incapable of perfect discrimination among the underlying events

(i.e., subjective probabilities) of the risk space (i.e., not

Q(A) - 1 for all c(0,1J), Now, if the subject is capable of perfect

discrimination among three or more basic alternatives, then the theorem

establishes that Either his preferences cannot be represented by a

linear utility function or his preference discrimination between

alternatives is not independent of his discrimination between

(subjective) probabilities. Judging by our abiost daily fluctuations

in preferences among n&n classes of alternatives, this result is

probably not of very serious consequence for a wide class of situatioa

however, such fluctuation my not occur for one very Isotant

co, moiti - money. It seem plausible to asswe that, other thin

being equal, subjects will inwariably pr~efeor a larger to a smallI

.iN
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a=. If such is the case and if there is &W reason to believe that

the utilVty for a gamble of money is given by the expeted valve of

the component utilities, then the preference struture for pables

cannot arise from inpendent judgmnts of preference a= g the

alternatives and judgments of the magnitudes of the probabilities

involved. Preferences must statisticaly influence the perception of

probability differencesl If such distortion does not occur, then the

utility for money cannot be a linear utility function, In arv event,

since most, if not all, of the experimental studies relating to utility

theory have involved money gambling situations, considerable caution

must be exercised in generalising such experimental results to

comodities and alternatives which differ from money in not possessing

i culturally accepted simple ordering.

9, !bstence of Linear Uti3li!Z Functions for Decoziosable Acimedeain
structures

The next result establishes that all Ccomposable Arhimedean

structuwes on a risk space, except those having one or the other of the

possible discontinuous cores, have linear utility functions, It will.

be noted that this existence theorem employs aciwhat different amup-

tions -4o, those used by von Neumano The two system have

RI-R5 and the Archimdean condition in common, The deccinoabilty and

continuity asumtions are different; indeed, they have no meaning for

weekly ordered sete. The von Ne axiom not asmued ae

41n discssing this result with Ward Fharde, he pointed out that som
Of his sabjects have exhlbited peculta reversals, e.g., sometime
preter!.g h.oo to 14.O3. However, it the set of alternatives in-

( luded. f6, Is and 3, it is doubtful that such revraLs ever w12i be
exhibited for arv of the three pairs, in which case our conlusw i
holds.

I I
i N
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io if a a b and (0,l) then ac b. for a sS,

lio if acc b c for some Ae.(O1), then a a bq

and io saom R6o

We could prove existence by showing that the Archimsdean and

decouposability assumtions (the latter in the form of consistency)

imply i, ii and iii; howeverp since we can get a more precise result

than mere existence, we will go about it directlyo

Theorem 14 Let P be a discrimination structure on a risk space S,,

P is a decomposable Archimedean structure with continuous core Q if

and onl if there is a linear util#ty function u and P is of the

following form: let a*sb*&S be elements described in axiom D3 with

a* > b* and let u, b. chosen so tiat u(a*) - 1 and u(b*) - o. then

i if P 3additive, there is an > o such that

P~ab) . + [P(a*,*)P(b-,,a*)][u(a).u(b)]} "  if u(a.) > u(b)

1 tK [P(a*,*)-P(b*,a,- [u(b)-u(a)J] if u(a) < u(b)

and il. ifP is reflexive, there is an > 0 such that

P(asb) P(a*,b*)[u(a)-u(b)] if u(a) > u(b)

0 ,ifu(a) < u(b)

In both cases

u(a) [P(a * ,,b*).P(b* ' a]* )  i/b

1 ~.[:(:.a~sa*J ,if a < br*bC LP~ *.b*)-PCb*$& ') -

Prooz Suppos P is decomposable with a continuous core and^rohimdeano

By theorem 7, we know the form of the core up to a constan ; define u as
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In the statimt of this thecrem using this e. Clearly' a(&*) 1

and u(b*) - 0. Consider az other oS.9 and ther, are tan'. cases to

considert

1. If a > &* > b*., then by the Arcbimedean condition tbare

exists an a~ (0,91) such that aI %^b&I By the decomposabIi3

assmoption. and the axiomui of a risk space,

P(a*,* a (ab*,a~b*)

P?(apb*)Q(.) +- P(b*,ta)Q(-bc)

and
P(b*,a&*) P(a~,*sacb*)

Subtracting and substituting the known form for Qq

so u(&-) - 14

iia If a* > a > b*.q then there existis an .4 such that a -i a444*,

and by a siMilar argUMentp u(a) =A..

Mei If a* '-- b* > a, then there exists =i A. such that b* **a& ;

and by a sind'erargument: u(&)

First,0 we show u, is order preservinge, If a > bp then there

are swal, oases depweng vpon their location relative to a* and b*,

We consider two typical cases. If a > a b >^b*,q them u(&) > I ~)

If a* > a > b > b*s then by the Archinedean condition there exist

.4,ps(001) mobh that a " &*b*s b &n &pb*l and from above, uI -)

and u(b) - Po It. A c P, then, since P(a*,b*) jL P(b*,a*), the con-

sistanoy of P (theorm 12) implies a -a*o* 5"Ib* -b, contrary to

bypothess Mw, u(a) > u(b).



Seconds, we om ui is linear. Aga cme nost cosider IL =dW

of asses of wbich we WiM consider on2V bra. if &e > asb > b*, thin

by the cah~d acndition there saist .,pa (0#,1) such that a -f 46,*

and b -. a4IPb*, using the wome of a risk "sc it is not difficult

to shom albt~e[.1.)J* so u(a~b) IA) + (1-))p a Xu(a) + (1AX)m(b).

As a second sauple, suppose a > alb> *' b > b*o Then there ezist

.cop,@s(O,91) Such that a* %^ &sAb*3. b 4., &Vjb*, and a* " (a&h)eb*. Aga

using the a=ioms of a risk space, b ,^ a4b*s so a" %^" (a)h )ob* -napb*s

where p - () + o Using the decoqmoition assutq~tiofl,

P(a*sa*) sP(apb*.gAb*)

P(ajb'I)Q(p-A) + P(b*sa)Q(AP)

aP(a~b*lapb*)

P(a,b*)Q(-cap) +. P(b*#&)Q(p-A)

collecting term,

0 a [P(asb*)-P(b*pa)(Q(P-sC) -m API

Since, u(a) a /A' 0,O the first term is not meo, so the second on

must be. Since Q is continuous, this iuplies A p Rewriting,

u(a~h) 2/oa = A+

U )u(a) + (1Qau(b) *

Next, we evsblish the form of P. As above, there are a

nuber of cases to consider and we wifl onlY emine one, nus3~

a > &*> b > b*. Let X - u(a)-.u(b). By the Archimsdean conditions

there exst .42p&(021) such that &* n' s~b* and b A &Pb*, so

u~a~~u~) - X. Also, b wN aob*. Using these facts and the

dioosposition assuqptions it. is easr to shmw

( P(ab)mP(a*,b*)a P(asb*)[Q(4l)QG4)] +



(I

If P is additive, then the additivity of Q and its ftmtional equation

Imply that:

Substituting this pl= the easily verified fact that

P(&*,Ob )-P(b ,a;*) [P (ab*)-P(b*.,a)] [Q(.()Q(-A)]

yields,

P(ajb) = P(a*sb*) - [P(&*,b*)-P(b*,&*)]Q(%)

Substituting the known form for a continuous core yields the result

If P is transitive, the argument is similar mid a little simpler,

The converse is irmediate if one simply sets up the two sides

of the decopition equation, substitutes the given form of P and

uses the linearity of uo

The final theorem is almost, but not quite) the converse of

the important corollay to theorem 8, which states that any linear

utility function of a decomposable linear structure is a sensation

ucalea To get a converse one has to suppose that P is strictly

m4tonic and that the core is continuouso

Thoeml- Let P be a deconable limear structure with a continuous

core, If P has a sensation scale u such that P is strictly monotonic

"Ing in that scale, theu is a lnar utility function.

Proof, Firet, we show that P is Arohimdsano Suppose a > b > o, then

by definitions P(a,c) > P(bc) Z P(e,c), but by the strict monoonicity

of P in u thee must be strict inequalities0  Since P is decomposable,

it is eitber transitive or additive* If it is transitive, then for

MW Ae.'sfolJ P(a.,o) mP(a,C)QGX<) By assumptions Q in continuous,
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so by thecm 7 its rwims Is [0,1], hence P(aa..,) ranpe Mo odyucs2

from 0 - P(eo) to P(ab). Thereor., there wdsts an a.(O,) such

that P(wo) a P(bc) A similar, but slightl- more ooqp~liated

argumnt establishes the same conclusion for the additive case. E

the fact that u is a sensation scale, Pn(a c)..u(c)] a P[u(b)-u(c)],

so by the strict montonicity of P, u(&. o) - u(o) - u(b) - u(e)o

Thus b &-i &i(oo

Since P is Arci and Q is continuous, theorem 14

establishes that there is a linear utility function u'"a Select nm

a*gS and let u and ul be those linear transformations such that

u(a*) - u'(a*) - 0a Since u and u' are each utility functions, there

is some strictly increasing function f such that u - f(u')o W an

argument slid' to that used above, the continuity of Q inplies the

continuiV of f. By the coroflaw 7 to theorem 8, u' as won as u is a

sensation scale. Thus, if we consider acS and real 8 such that

u'(a) + 8 in defined as the image of an element beB, then

P( I) = P[ut(a)+8,u'(a)] - P(8)v

so by definition of f.,

P(ba) - P jf[ut(a)+8],f[u'(a)] - P jf[uI(a)+8]-f[u'(a)]j o

B" the monotonicity of P in - these equations inp3,' there In a fmction

g such that,

f [u'()+8] - fU,'(a)] + g(a).

Let a u " then u(,*) w 0 - f[u,(a*)] - f(o), so f (8) a g(8).

Th., f (u' + 8) m f(u') = f(8) for all ul and 8 such that the and

ul + 8 are Ime of poiuts of S under uo Since ut is "inear, there are a

| ( @OGtSBU of such values. This,ith the contUi of f, iqMlis

f (z) a z, Hwene u is 'Iner
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abl.e di? fcrerae (jnd) iv no'tr, vae. it 1r~d Ui.tI~t considcr the
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cut-of~f (see section 3) used to deine the seumiordtir frcr which the

jnlc hiut1on trises. This we shall examine belov'



Assuming that the technical question can be resolved

favorably, the second question is whether equating jnds between people

does in fact solve the interpersonal comparison problem, Certainly,

nar people with whom I have spoken ae unconvinced that it does solve

it; at the very least, they feel there is not now arV convincing

argument, With this I agrees but intuitively I feel that equating

Juds is roughly what one means by such a comparisono A person

considers how sensitive he is to a chages, which he masures sub-

jectively in terms of the number of his just digaernable units, and he

compares this with how sensitive another person is to the change in

term of that persongs jnd4 It seems to me that when one makes such

comparisons one is invariably invoking a comparison of sensitivity,

and I would argue that "sensitivity" means that which is "Just dis-

criinatedom One .easure of this is the Jndo Thus, equating Jude

is suggested as the solution to the Interpersonal comparison problem,

provide that the tebnical problem mentioned ,:-fore can be resolvedo

As we shall seej this leads to an empirical question, the anwer to

which is not now known0 Whether defining jrd unite to be equal does

capture the idea of interpersonal comparison seems at present to be a

difficult empirical problem4

How$ to the technical question0  Suppoee that an arbitbwy

probability cutoff k. 9 < k < 1, is selected., and suppose that we have

a decoposabls limear structure P with a continuous core Q and a

limar utility function uo We wish to find an expression for the jzd

fC tions of u corresponding to the induced semiorder (definition

, These are consta except at the boimds of the utiity fwutiom



m -

Let a*,b4e8 be the elets: described In am'o. D3s and mupge9e a b*> b.

We =y tais the limer t anstommt.on of the utilWtr futntion that

u(a*)=a- and(U(b*)-O hterak, fonowng theoaem atI

we know that the jn fmaotion 8 can be expemed an

8

By definition5and the fact that P is regua. (theoem 6), (atAb*)Ib*

if and only if

k > P(a*.rb*gb*)

In the additive cane, this reduces to

k > 1 {K + [P(a*,b,*>.P(b*sqa*)].cC}p

and in the transitive case to

k > P(&*,b*MV

Solving, 1/a

8 2k ., If P is additive,

80 [k if P is transitive

1I
Now, opqpose that we have two different people, who under the

same efto eqrw prefweeee between altrative of the n

risk p . Suppose that each person yields a deoe le

str re having a limar utility ftunatio and a continuous ane;

caU t- P and Sin" he .- conditiu m o,,

we sy oppose that both a tructree wre additive or both w'e trensitive.



For aeh persons the same probablitr cutoff k in =ud but s, and b*

m differe While a priori, the .lues of K also differ, in

Practice forced anaws probab3 would be used In hioh owes K m 1,

Thin ws will aum*o Then the ratio of the Jude is givem by

-[(2 s2p 2 2 (2k-)'l £2 , ifPisAa.&tIv

113 11

r25and

1/6
2 (k)'1 "2 If P it atie.

Thmu, we see that the above definition for resolving Inter-

puasomal cmaris makes no sene at all nmles l ' & o

it depends pon the parmeter k, which i. an artifact of our mloula-

tiomns Amsulmng the decacqmIton ammption is met, it is an oqfrUsl

qiuotica whether the parsmeter a is (aprazxly) constant over the

populat,'o a If so, this would be an ezftwAr3, interesting result

repzdlsm of the SIterpersml @oqparlson pmblm Nte the

cometanoy of a would not impqy tlat all people have 4 dsn ml dIs-rnlrm

tim m hi m over vinit. Sn the vorld, but It would mmn this over

se piobabLitL (see eotion 7).

II
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